1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
// Chemfiles, a modern library for chemistry file reading and writing
// Copyright (C) 2015-2018 Guillaume Fraux -- BSD licensed
use std::marker::PhantomData;
#[allow(clippy::wildcard_imports)]
use chemfiles_sys as ffi;
use crate::errors::{check, check_not_null, check_success, Error};
/// Available unit cell shapes.
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum CellShape {
/// Orthorhombic cell, with the three angles equals to 90°.
Orthorhombic,
/// Triclinic cell, with any values for the angles.
Triclinic,
/// Infinite cell, to use when there is no cell.
Infinite,
}
impl From<ffi::chfl_cellshape> for CellShape {
fn from(celltype: ffi::chfl_cellshape) -> CellShape {
match celltype {
ffi::chfl_cellshape::CHFL_CELL_ORTHORHOMBIC => CellShape::Orthorhombic,
ffi::chfl_cellshape::CHFL_CELL_TRICLINIC => CellShape::Triclinic,
ffi::chfl_cellshape::CHFL_CELL_INFINITE => CellShape::Infinite,
}
}
}
impl From<CellShape> for ffi::chfl_cellshape {
fn from(celltype: CellShape) -> ffi::chfl_cellshape {
match celltype {
CellShape::Orthorhombic => ffi::chfl_cellshape::CHFL_CELL_ORTHORHOMBIC,
CellShape::Triclinic => ffi::chfl_cellshape::CHFL_CELL_TRICLINIC,
CellShape::Infinite => ffi::chfl_cellshape::CHFL_CELL_INFINITE,
}
}
}
/// An `UnitCell` represent the box containing the atoms, and its periodicity.
///
/// An unit cell is fully represented by three lengths (a, b, c); and three
/// angles (alpha, beta, gamma). The angles are stored in degrees, and the
/// lengths in Angstroms.
///
/// A cell also has a matricial representation, by projecting the three base
/// vector into an orthonormal base. We choose to represent such matrix as an
/// upper triangular matrix:
///
/// ```text
/// | a_x b_x c_x |
/// | 0 b_y c_y |
/// | 0 0 c_z |
/// ```
#[derive(Debug)]
pub struct UnitCell {
handle: *mut ffi::CHFL_CELL,
}
/// An analog to a reference to an unit cell (`&UnitCell`)
#[derive(Debug)]
pub struct UnitCellRef<'a> {
inner: UnitCell,
marker: PhantomData<&'a UnitCell>,
}
impl<'a> std::ops::Deref for UnitCellRef<'a> {
type Target = UnitCell;
fn deref(&self) -> &UnitCell {
&self.inner
}
}
/// An analog to a mutable reference to an unit cell (`&mut UnitCell`)
#[derive(Debug)]
pub struct UnitCellMut<'a> {
inner: UnitCell,
marker: PhantomData<&'a mut UnitCell>,
}
impl<'a> std::ops::Deref for UnitCellMut<'a> {
type Target = UnitCell;
fn deref(&self) -> &UnitCell {
&self.inner
}
}
impl<'a> std::ops::DerefMut for UnitCellMut<'a> {
fn deref_mut(&mut self) -> &mut UnitCell {
&mut self.inner
}
}
impl Clone for UnitCell {
fn clone(&self) -> UnitCell {
unsafe {
let new_handle = ffi::chfl_cell_copy(self.as_ptr());
UnitCell::from_ptr(new_handle)
}
}
}
impl UnitCell {
/// Create an owned `UnitCell` from a C pointer.
///
/// This function is unsafe because no validity check is made on the pointer.
#[inline]
pub(crate) unsafe fn from_ptr(ptr: *mut ffi::CHFL_CELL) -> UnitCell {
check_not_null(ptr);
UnitCell { handle: ptr }
}
/// Create a borrowed `UnitCell` from a C pointer.
///
/// This function is unsafe because no validity check is made on the
/// pointer, and the caller is responsible for setting the right lifetime.
#[inline]
#[allow(clippy::ptr_cast_constness)]
pub(crate) unsafe fn ref_from_ptr<'a>(ptr: *const ffi::CHFL_CELL) -> UnitCellRef<'a> {
UnitCellRef {
inner: UnitCell::from_ptr(ptr as *mut ffi::CHFL_CELL),
marker: PhantomData,
}
}
/// Create a borrowed `UnitCell` from a C pointer.
///
/// This function is unsafe because no validity check is made on the
/// pointer, except for it being non-null, and the caller is responsible for
/// setting the right lifetime
#[inline]
pub(crate) unsafe fn ref_mut_from_ptr<'a>(ptr: *mut ffi::CHFL_CELL) -> UnitCellMut<'a> {
UnitCellMut {
inner: UnitCell::from_ptr(ptr),
marker: PhantomData,
}
}
/// Get the underlying C pointer as a const pointer.
#[inline]
pub(crate) fn as_ptr(&self) -> *const ffi::CHFL_CELL {
self.handle
}
/// Get the underlying C pointer as a mutable pointer.
#[inline]
pub(crate) fn as_mut_ptr(&mut self) -> *mut ffi::CHFL_CELL {
self.handle
}
/// Create an `Orthorhombic` `UnitCell` from the three lengths, in Angstroms.
///
/// # Example
/// ```
/// # use chemfiles::{UnitCell, CellShape};
/// let cell = UnitCell::new([30.0, 30.0, 23.0]);
///
/// assert_eq!(cell.lengths(), [30.0, 30.0, 23.0]);
/// assert_eq!(cell.angles(), [90.0, 90.0, 90.0]);
/// assert_eq!(cell.shape(), CellShape::Orthorhombic);
/// ```
pub fn new(lengths: [f64; 3]) -> UnitCell {
unsafe {
let handle = ffi::chfl_cell(lengths.as_ptr(), std::ptr::null());
UnitCell::from_ptr(handle)
}
}
/// Create an `Infinite` `UnitCell`.
///
/// # Example
/// ```
/// # use chemfiles::{UnitCell, CellShape};
/// let cell = UnitCell::infinite();
///
/// assert_eq!(cell.lengths(), [0.0, 0.0, 0.0]);
/// assert_eq!(cell.angles(), [90.0, 90.0, 90.0]);
/// assert_eq!(cell.shape(), CellShape::Infinite);
/// ```
pub fn infinite() -> UnitCell {
let mut cell = UnitCell::new([0.0, 0.0, 0.0]);
cell.set_shape(CellShape::Infinite).expect("could not set cell shape");
return cell;
}
/// Create an `Triclinic` `UnitCell` from the three lengths (in Angstroms)
/// and three angles (in degree). `alpha` is the angle between the vectors
/// `b` and `c`; `beta` is the between the vectors `a` and `c` and `gamma`
/// is the angle between the vectors `a` and `b`.
///
/// # Example
/// ```
/// # use chemfiles::{UnitCell, CellShape};
/// let cell = UnitCell::triclinic([10.0, 10.0, 10.0], [98.0, 99.0, 90.0]);
///
/// assert_eq!(cell.lengths(), [10.0, 10.0, 10.0]);
/// assert_eq!(cell.angles()[0], 98.0);
/// // Rounding errors might occur due to internal representation
/// assert!((cell.angles()[1] - 99.0).abs() < 1e-12);
/// assert_eq!(cell.angles()[2], 90.0);
/// assert_eq!(cell.shape(), CellShape::Triclinic);
/// ```
pub fn triclinic(lengths: [f64; 3], angles: [f64; 3]) -> UnitCell {
unsafe {
let handle = ffi::chfl_cell(lengths.as_ptr(), angles.as_ptr());
UnitCell::from_ptr(handle)
}
}
/// Create an `UnitCell` from a cell matrix. If `matrix` contains only
/// zeros, then an `Infinite` cell is created. If only the diagonal of the
/// matrix is non-zero, then the cell is `Orthorhombic`. Else a
/// `Triclinic` cell is created. The matrix entries should be in Angstroms.
///
/// # Panics
///
/// If the matrix has a negative determinant, or more generally is not
/// representing a unit cell.
///
/// # Example
/// ```
/// # use chemfiles::{UnitCell, CellShape};
/// let cell = UnitCell::from_matrix([
/// [1.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 3.0]
/// ]);
///
/// assert_eq!(cell.lengths(), [1.0, 2.0, 3.0]);
/// assert_eq!(cell.angles(), [90.0, 90.0, 90.0]);
/// assert_eq!(cell.shape(), CellShape::Orthorhombic);
/// ```
pub fn from_matrix(mut matrix: [[f64; 3]; 3]) -> UnitCell {
unsafe {
let handle = ffi::chfl_cell_from_matrix(matrix.as_mut_ptr());
UnitCell::from_ptr(handle)
}
}
/// Get the three lengths of the cell, in Angstroms.
///
/// # Example
/// ```
/// # use chemfiles::UnitCell;
/// let cell = UnitCell::new([30.0, 30.0, 23.0]);
/// assert_eq!(cell.lengths(), [30.0, 30.0, 23.0]);
/// ```
pub fn lengths(&self) -> [f64; 3] {
let mut lengths = [0.0; 3];
unsafe {
check_success(ffi::chfl_cell_lengths(self.as_ptr(), lengths.as_mut_ptr()));
}
return lengths;
}
/// Set the three lengths of the cell, in Angstroms.
///
/// # Errors
///
/// This function fails if the unit cell is infinite, or if one of the
/// lengths is negative.
///
/// # Example
/// ```
/// # use chemfiles::UnitCell;
/// let mut cell = UnitCell::new([30.0, 30.0, 23.0]);
///
/// cell.set_lengths([10.0, 30.0, 42.0]).unwrap();
/// assert_eq!(cell.lengths(), [10.0, 30.0, 42.0]);
///
/// assert!(UnitCell::infinite().set_lengths([1.0, 1.0, 1.0]).is_err());
/// ```
pub fn set_lengths(&mut self, lengths: [f64; 3]) -> Result<(), Error> {
unsafe { check(ffi::chfl_cell_set_lengths(self.as_mut_ptr(), lengths.as_ptr())) }
}
/// Get the three angles of the cell, in degrees.
///
/// # Example
/// ```
/// # use chemfiles::UnitCell;
/// let cell = UnitCell::new([20.0, 20.0, 20.0]);
/// assert_eq!(cell.angles(), [90.0, 90.0, 90.0]);
///
/// let cell = UnitCell::triclinic([20.0, 20.0, 20.0], [100.0, 120.0, 90.0]);
/// assert_eq!(cell.angles()[0], 100.0);
/// // Rounding errors might occur due to internal representation
/// assert!((cell.angles()[1] - 120.0).abs() < 1e-12);
/// assert_eq!(cell.angles()[2], 90.0);
/// ```
pub fn angles(&self) -> [f64; 3] {
let mut angles = [0.0; 3];
unsafe {
check_success(ffi::chfl_cell_angles(self.as_ptr(), angles.as_mut_ptr()));
}
return angles;
}
/// Set the three angles of the cell, in degrees.
///
/// # Errors
///
/// This function fails if the unit cell is not `Triclinic`.
///
/// # Example
/// ```
/// # use chemfiles::UnitCell;
/// let mut cell = UnitCell::triclinic([20.0, 20.0, 20.0], [100.0, 120.0, 90.0]);
/// assert_eq!(cell.angles()[0], 100.0);
/// // Rounding errors might occur due to internal representation
/// assert!((cell.angles()[1] - 120.0).abs() < 1e-12);
/// assert_eq!(cell.angles()[2], 90.0);
///
/// cell.set_angles([90.0, 90.0, 90.0]).unwrap();
/// assert_eq!(cell.angles(), [90.0, 90.0, 90.0]);
/// ```
pub fn set_angles(&mut self, angles: [f64; 3]) -> Result<(), Error> {
unsafe { check(ffi::chfl_cell_set_angles(self.as_mut_ptr(), angles.as_ptr())) }
}
/// Get the unit cell matricial representation.
///
/// The unit cell representation is obtained by aligning the a vector along
/// the *x* axis and putting the b vector in the *xy* plane. This make the
/// matrix an upper triangular matrix:
///
/// ```text
/// | a_x b_x c_x |
/// | 0 b_y c_y |
/// | 0 0 c_z |
/// ```
///
/// # Example
/// ```
/// # use chemfiles::UnitCell;
/// let cell = UnitCell::new([10.0, 20.0, 30.0]);
///
/// let matrix = cell.matrix();
///
/// assert_eq!(matrix[0][0], 10.0);
/// assert_eq!(matrix[1][1], 20.0);
/// assert_eq!(matrix[2][2], 30.0);
///
/// assert!(matrix[1][2].abs() < 1e-9);
/// ```
pub fn matrix(&self) -> [[f64; 3]; 3] {
let mut matrix = [[0.0; 3]; 3];
unsafe {
check_success(ffi::chfl_cell_matrix(self.as_ptr(), matrix.as_mut_ptr()));
}
return matrix;
}
/// Get the shape of the unit cell.
///
/// # Example
/// ```
/// # use chemfiles::{UnitCell, CellShape};
/// let cell = UnitCell::new([10.0, 20.0, 30.0]);
/// assert_eq!(cell.shape(), CellShape::Orthorhombic);
/// ```
pub fn shape(&self) -> CellShape {
let mut shape = ffi::chfl_cellshape::CHFL_CELL_INFINITE;
unsafe {
check_success(ffi::chfl_cell_shape(self.as_ptr(), &mut shape));
}
return CellShape::from(shape);
}
/// Set the shape of the unit cell to `shape`.
///
/// # Errors
///
/// This can fail if the cell length or angles are incompatible with the
/// new shape.
///
/// # Example
/// ```
/// # use chemfiles::{UnitCell, CellShape};
/// let mut cell = UnitCell::new([10.0, 20.0, 30.0]);
/// assert_eq!(cell.shape(), CellShape::Orthorhombic);
///
/// cell.set_shape(CellShape::Triclinic).unwrap();
/// assert_eq!(cell.shape(), CellShape::Triclinic);
/// ```
pub fn set_shape(&mut self, shape: CellShape) -> Result<(), Error> {
unsafe { check(ffi::chfl_cell_set_shape(self.as_mut_ptr(), shape.into())) }
}
/// Get the volume of the unit cell.
///
/// # Example
/// ```
/// # use chemfiles::UnitCell;
/// let cell = UnitCell::new([10.0, 20.0, 30.0]);
/// assert_eq!(cell.volume(), 10.0 * 20.0 * 30.0);
/// ```
pub fn volume(&self) -> f64 {
let mut volume = 0.0;
unsafe {
check_success(ffi::chfl_cell_volume(self.as_ptr(), &mut volume));
}
return volume;
}
/// Wrap a `vector` in this unit cell.
///
/// # Example
/// ```
/// # use chemfiles::UnitCell;
/// let cell = UnitCell::new([10.0, 20.0, 30.0]);
///
/// let mut vector = [12.0, 5.2, -45.3];
/// cell.wrap(&mut vector);
/// assert_eq!(vector, [2.0, 5.2, 14.700000000000003]);
/// ```
pub fn wrap(&self, vector: &mut [f64; 3]) {
unsafe {
check_success(ffi::chfl_cell_wrap(self.as_ptr(), vector.as_mut_ptr()));
}
}
}
impl Drop for UnitCell {
fn drop(&mut self) {
unsafe {
let _ = ffi::chfl_free(self.as_ptr().cast());
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn clone() {
let mut cell = UnitCell::new([2.0, 3.0, 4.0]);
assert_eq!(cell.lengths(), [2.0, 3.0, 4.0]);
let copy = cell.clone();
assert_eq!(copy.lengths(), [2.0, 3.0, 4.0]);
cell.set_lengths([10.0, 12.0, 11.0]).unwrap();
assert_eq!(cell.lengths(), [10.0, 12.0, 11.0]);
assert_eq!(copy.lengths(), [2.0, 3.0, 4.0]);
}
#[test]
fn lengths() {
let mut cell = UnitCell::new([2.0, 3.0, 4.0]);
assert_eq!(cell.lengths(), [2.0, 3.0, 4.0]);
cell.set_lengths([10.0, 12.0, 11.0]).unwrap();
assert_eq!(cell.lengths(), [10.0, 12.0, 11.0]);
}
#[test]
fn angles() {
let mut cell = UnitCell::new([2.0, 3.0, 4.0]);
crate::assert_vector3d_eq(&cell.angles(), &[90.0, 90.0, 90.0], 1e-6);
cell.set_shape(CellShape::Triclinic).unwrap();
cell.set_angles([80.0, 89.0, 100.0]).unwrap();
crate::assert_vector3d_eq(&cell.angles(), &[80.0, 89.0, 100.0], 1e-6);
let cell = UnitCell::triclinic([1., 2., 3.], [80., 90., 100.]);
crate::assert_vector3d_eq(&cell.angles(), &[80.0, 90.0, 100.0], 1e-6);
}
#[test]
fn volume() {
let cell = UnitCell::new([2.0, 3.0, 4.0]);
assert_eq!(cell.volume(), 2.0 * 3.0 * 4.0);
}
#[test]
fn wrap() {
let cell = UnitCell::new([10.0, 20.0, 30.0]);
let mut vector = [12.0, 5.2, -45.3];
cell.wrap(&mut vector);
crate::assert_vector3d_eq(&vector, &[2.0, 5.2, 14.7], 1e-6);
}
#[test]
fn matrix() {
let cell = UnitCell::new([2.0, 3.0, 4.0]);
let matrix = cell.matrix();
let result = [[2.0, 0.0, 0.0], [0.0, 3.0, 0.0], [0.0, 0.0, 4.0]];
for i in 0..3 {
for j in 0..3 {
approx::assert_ulps_eq!(matrix[i][j], result[i][j], epsilon = 1e-12);
}
}
}
#[test]
fn from_matrix() {
let cell = UnitCell::from_matrix([[10.0, 0.0, 0.0], [0.0, 21.0, 0.0], [0.0, 0.0, 32.0]]);
assert_eq!(cell.shape(), CellShape::Orthorhombic);
assert_eq!(cell.lengths(), [10.0, 21.0, 32.0]);
let result_matrix = [[123.0, 4.08386, 71.7295], [0.0, 233.964, 133.571], [0.0, 0.0, 309.901]];
let cell = UnitCell::from_matrix(result_matrix);
assert_eq!(cell.shape(), CellShape::Triclinic);
for i in 0..3 {
approx::assert_ulps_eq!(cell.lengths()[i], [123.0, 234.0, 345.0][i], epsilon = 1e-3);
approx::assert_ulps_eq!(cell.angles()[i], [67.0, 78.0, 89.0][i], epsilon = 1e-3);
}
let matrix = cell.matrix();
for i in 0..3 {
for j in 0..3 {
approx::assert_ulps_eq!(matrix[i][j], result_matrix[i][j], epsilon = 1e-12);
}
}
}
#[test]
fn shape() {
let cell = UnitCell::new([2.0, 3.0, 4.0]);
assert_eq!(cell.shape(), CellShape::Orthorhombic);
let cell = UnitCell::infinite();
assert_eq!(cell.shape(), CellShape::Infinite);
let cell = UnitCell::triclinic([1.0, 2.0, 3.0], [80.0, 90.0, 100.0]);
assert_eq!(cell.shape(), CellShape::Triclinic);
let mut cell = UnitCell::new([10.0, 10.0, 10.0]);
assert_eq!(cell.shape(), CellShape::Orthorhombic);
cell.set_shape(CellShape::Triclinic).unwrap();
assert_eq!(cell.shape(), CellShape::Triclinic);
}
}