Topology class¶
-
class
Topology
¶ A topology contains the definition of all the atoms in the system, as well as the liaisons between the particles (bonds, angles, dihedrals, …) and the residues.
Only the atoms and the bonds are stored, the angles, dihedrals and impropers are automaticaly deduced from the bonds.
It is also possible to iterate over a
Topology
, yielding all the atoms in the system.auto topology = Topology(); topology.add_atom(Atom("Fe")); topology.add_atom(Atom("Fe")); topology.add_atom(Atom("Fe")); for (Atom& atom: topology) { assert(atom.name() == "Fe"); }
Public Functions
-
Topology
()¶ Construct a new empty topology
auto topology = Topology(); assert(topology.size() == 0); assert(topology.bonds().size() == 0);
-
Atom &
operator[]
(size_t index)¶ Get a reference to the atom at the position
index
.auto topology = Topology(); topology.add_atom(Atom("Co")); topology.add_atom(Atom("V")); topology.add_atom(Atom("Fe")); topology.add_atom(Atom("Fe")); assert(topology[0].name() == "Co"); assert(topology[1].name() == "V"); topology[2].set_mass(45); assert(topology[2].mass() == 45);
- Parameters
index
: the atomic index
- Exceptions
OutOfBounds
: ifindex
is greater thansize()
-
const Atom &
operator[]
(size_t index) const¶ Get a const reference to the atom at the position
index
.auto topology = Topology(); topology.add_atom(Atom("Co")); topology.add_atom(Atom("V")); topology.add_atom(Atom("Fe")); topology.add_atom(Atom("Fe")); assert(topology[0].name() == "Co"); assert(topology[1].name() == "V"); topology[2].set_mass(45); assert(topology[2].mass() == 45);
- Parameters
index
: the atomic index
- Exceptions
OutOfBounds
: ifindex
is greater thansize()
-
void
add_atom
(Atom atom)¶ Add an
atom
at the end of this topology.auto topology = Topology(); topology.add_atom(Atom("Zn")); assert(topology.size() == 1); assert(topology[0].name() == "Zn");
- Parameters
atom
: the new atom to add
-
void
remove
(size_t i)¶ Delete the atom at index
i
in this topology, as well as all the bonds involving this atom.This function modify the index of all the atoms after
i
, and modify the bond list accordingly.auto topology = Topology(); topology.add_atom(Atom("Zn")); topology.add_atom(Atom("Fe")); topology.add_atom(Atom("Rd")); assert(topology.size() == 3); assert(topology[1].name() == "Fe"); topology.remove(0); // atomic indexes are shifted by remove assert(topology[1].name() == "Rd");
- Parameters
i
: the index of the atom to remove
- Exceptions
OutOfBounds
: ifi
is greater than size()
-
void
add_bond
(size_t atom_i, size_t atom_j, Bond::BondOrder bond_order = Bond::UNKNOWN)¶ Add a bond in the system, between the atoms at index
atom_i
andatom_j
.auto topology = Topology(); topology.add_atom(Atom("H")); topology.add_atom(Atom("O")); topology.add_atom(Atom("H")); topology.add_bond(0, 1); topology.add_bond(1, 2); assert(topology.bonds() == std::vector<Bond>({{0, 1}, {1, 2}})); // angles are automaticaly computed too assert(topology.angles() == std::vector<Angle>({{0, 1, 2}}));
- Parameters
atom_i
: the index of the first atom in the bondatom_j
: the index of the second atom in the bondbond_order
: the bond order for the bond added
- Exceptions
OutOfBounds
: ifatom_i
oratom_j
are greater thansize()
Error
: ifatom_i == atom_j
, as this is an invalid bond
-
void
remove_bond
(size_t atom_i, size_t atom_j)¶ Remove a bond in the system, between the atoms at index
atom_i
andatom_j
.If the bond does not exist, this does nothing.
auto topology = Topology(); topology.add_atom(Atom("H")); topology.add_atom(Atom("O")); topology.add_atom(Atom("H")); topology.add_bond(0, 1); topology.add_bond(1, 2); assert(topology.bonds() == std::vector<Bond>({{0, 1}, {1, 2}})); topology.remove_bond(1, 0); assert(topology.bonds() == std::vector<Bond>({{1, 2}})); // This does nothing topology.remove_bond(0, 2); assert(topology.bonds() == std::vector<Bond>({{1, 2}}));
- Parameters
atom_i
: the index of the first atom in the bondatom_j
: the index of the second atom in the bond
- Exceptions
OutOfBounds
: ifatom_i
oratom_j
are greater thansize()
-
Bond::BondOrder
bond_order
(size_t atom_i, size_t atom_j) const¶ Get the bond order for the given bond
If the bond does not exist, this will thrown an Error.
auto topology = Topology(); topology.add_atom(Atom("H")); topology.add_atom(Atom("O")); topology.add_atom(Atom("H")); topology.add_atom(Atom("O")); topology.add_atom(Atom("O")); topology.add_bond(0, 1, Bond::SINGLE); topology.add_bond(3, 4, Bond::DOUBLE); topology.add_bond(1, 2, Bond::SINGLE); // Lookup by the bond index assert(topology.bond_orders()[0] == Bond::SINGLE); assert(topology.bond_orders()[1] == Bond::SINGLE); assert(topology.bond_orders()[2] == Bond::DOUBLE); // Lookup by the atom indexes assert(topology.bond_order(0, 1) == Bond::SINGLE); assert(topology.bond_order(3, 4) == Bond::DOUBLE);
- Parameters
atom_i
: the index of the first atom in the bondatom_j
: the index of the second atom in the bond
- Exceptions
OutOfBounds
: ifatom_i
oratom_j
are greater thansize()
Error
: if no bond betweenatom_i
andatom_j
exists.
-
size_t
size
() const¶ Get the number of atoms in the topology
auto topology = Topology(); assert(topology.size() == 0); topology.resize(22); assert(topology.size() == 22); topology.add_atom(Atom("H")); assert(topology.size() == 23);
-
void
resize
(size_t size)¶ Resize the topology to hold
size
atoms, adding new atoms as needed.If the new number of atoms is bigger than the old one, pre-existing atoms are conserved.
If the new size if smaller than the old one, all atoms and connectivity elements after the new size are removed.
auto topology = Topology(); assert(topology.size() == 0); topology.resize(22); assert(topology.size() == 22);
- Parameters
size
: the new size of the topology
-
void
reserve
(size_t size)¶ Allocate memory in the frame to be able to store data for
size
atoms.This function does not change the actual number of atoms in the topology, and should be used as an optimisation.
auto topology = Topology(); assert(topology.size() == 0); topology.resize(10); assert(topology.size() == 10); // reserve allocate memory, but does not change the size topology.reserve(100); assert(topology.size() == 10);
- Parameters
size
: the number of elements to reserve memory for
-
const std::vector<Bond> &
bonds
() const¶ Get the bonds in the system
The bonds are sorted according to
operator<(const Bond&, const Bond&)
, which mean it is possible to look for a bond in the list using a binary search (std::lower_bound
).auto topology = Topology(); topology.add_atom(Atom("H")); topology.add_atom(Atom("O")); topology.add_atom(Atom("H")); topology.add_bond(0, 1); topology.add_bond(1, 2); assert(topology.bonds() == std::vector<Bond>({{0, 1}, {1, 2}})); auto bonds = topology.bonds(); // perform a binary search in the bonds auto it = std::lower_bound(bonds.begin(), bonds.end(), Bond(1, 2)); assert(it != bonds.end()); assert(*it == Bond(1, 2));
-
const std::vector<Bond::BondOrder> &
bond_orders
() const¶ Get the bond orders in the system.
The bond orders are sorted so that the index of each bond is the same as its index in the array returned by
Topology::bonds
. This means that the bond order forTopology::bonds()[index]
would be given bybond_orders()[index]
.auto topology = Topology(); topology.add_atom(Atom("H")); topology.add_atom(Atom("O")); topology.add_atom(Atom("H")); topology.add_atom(Atom("O")); topology.add_atom(Atom("O")); topology.add_bond(0, 1, Bond::SINGLE); topology.add_bond(3, 4, Bond::DOUBLE); topology.add_bond(1, 2, Bond::SINGLE); // Lookup by the bond index assert(topology.bond_orders()[0] == Bond::SINGLE); assert(topology.bond_orders()[1] == Bond::SINGLE); assert(topology.bond_orders()[2] == Bond::DOUBLE); // Lookup by the atom indexes assert(topology.bond_order(0, 1) == Bond::SINGLE); assert(topology.bond_order(3, 4) == Bond::DOUBLE);
-
const std::vector<Angle> &
angles
() const¶ Get the angles in the system
The angles are sorted according to
operator<(const Angle&, const Angle&)
, which mean it is possible to look for an angle in the list using a binary search (std::lower_bound
).auto topology = Topology(); topology.add_atom(Atom("H")); topology.add_atom(Atom("O")); topology.add_atom(Atom("O")); topology.add_atom(Atom("H")); topology.add_bond(0, 1); topology.add_bond(1, 2); topology.add_bond(2, 3); assert(topology.angles() == std::vector<Angle>({{0, 1, 2}, {1, 2, 3}})); auto angles = topology.angles(); // perform a binary search in the angles auto it = std::lower_bound(angles.begin(), angles.end(), Angle(1, 2, 3)); assert(it != angles.end()); assert(*it == Angle(1, 2, 3));
-
const std::vector<Dihedral> &
dihedrals
() const¶ Get the dihedral angles in the system
The dihedrals are sorted according to
operator<(const Dihedral&, const Dihedral&)
, which mean it is possible to look for a dihedral in the list using a binary search (std::lower_bound
).auto topology = Topology(); topology.add_atom(Atom("H")); topology.add_atom(Atom("O")); topology.add_atom(Atom("O")); topology.add_atom(Atom("H")); topology.add_bond(0, 1); topology.add_bond(1, 2); topology.add_bond(2, 3); assert(topology.dihedrals() == std::vector<Dihedral>({{0, 1, 2, 3}})); auto dihedrals = topology.dihedrals(); // perform a binary search in the dihedrals auto it = std::lower_bound( dihedrals.begin(), dihedrals.end(), Dihedral(0, 1, 2, 3) ); assert(it != dihedrals.end()); assert(*it == Dihedral(0, 1, 2, 3));
-
const std::vector<Improper> &
impropers
() const¶ Get the improper dihedral angles in the system
The impropers are sorted according to
operator<(const Improper&, const Improper&)
, which mean it is possible to look for an improper in the list using a binary search (std::lower_bound
).auto topology = Topology(); topology.add_atom(Atom("C")); topology.add_atom(Atom("H")); topology.add_atom(Atom("H")); topology.add_atom(Atom("H")); topology.add_bond(0, 1); topology.add_bond(0, 2); topology.add_bond(0, 3); assert(topology.impropers() == std::vector<Improper>({{1, 0, 2, 3}})); auto impropers = topology.impropers(); // perform a binary search in the impropers auto it = std::lower_bound( impropers.begin(), impropers.end(), Improper(1, 0, 2, 3) ); assert(it != impropers.end()); assert(*it == Improper(1, 0, 2, 3));
-
void
clear_bonds
()¶ Remove all bonding information in the topology (bonds, angles and dihedrals)
auto topology = Topology(); topology.add_atom(Atom("H")); topology.add_atom(Atom("O")); topology.add_atom(Atom("H")); topology.add_bond(0, 1); topology.add_bond(1, 2); assert(topology.bonds().size() == 2); assert(topology.angles().size() == 1); topology.clear_bonds(); assert(topology.bonds().size() == 0); assert(topology.angles().size() == 0);
-
void
add_residue
(Residue residue)¶ Add a
residue
to this topology.auto topology = Topology(); topology.add_atom(Atom("Zn")); topology.add_atom(Atom("Fe")); assert(topology.residues().size() == 0); auto residue = Residue("first"); residue.add_atom(0); topology.add_residue(residue); assert(topology.residues().size() == 1);
- Parameters
residue
: the residue to add to this topology
- Exceptions
chemfiles::Error
: if any atom in theresidue
is already in another residue in this topology. In that case, the topology is not modified.
-
bool
are_linked
(const Residue &first, const Residue &second) const¶ Check if two residues are linked together, i.e. if there is a bond between one atom in the
first
residue and one atom in thesecond
one. Both residues should be in this topology.The two residues are the same (
first == second
), this function returnstrue
.auto topology = Topology(); topology.add_atom(Atom("Zn")); topology.add_atom(Atom("Fe")); auto first = Residue("first"); first.add_atom(0); topology.add_residue(first); auto second = Residue("second"); second.add_atom(1); topology.add_residue(second); assert(!topology.are_linked(first, second)); topology.add_bond(0, 1); assert(topology.are_linked(first, second));
-
optional<const Residue&>
residue_for_atom
(size_t index) const¶ Get the residue containing the atom at the given
index
.If no residue contains this atom, this function returns
nullopt
.This function returna an
chemfiles::optional
value that is close to C++17std::optional
.auto topology = Topology(); topology.add_atom(Atom("Zn")); topology.add_atom(Atom("Fe")); auto first = Residue("first"); first.add_atom(0); topology.add_residue(first); assert(topology.residue_for_atom(0)); assert(topology.residue_for_atom(0)->name() == "first"); assert(!topology.residue_for_atom(1)); assert(topology.residue_for_atom(1) == nullopt);
-
const Residue &
residue
(size_t index) const¶ Get the residue at the given
index
in this topologyThere is no guarantee that this index matches the residue id.
auto topology = Topology(); topology.add_atom(Atom("Zn")); topology.add_atom(Atom("Fe")); auto first = Residue("first"); first.add_atom(0); topology.add_residue(first); assert(topology.residue(0).name() == "first");
-
const std::vector<Residue> &
residues
() const¶ Get all the residues in the topology as a vector
auto topology = Topology(); topology.add_residue(Residue("first")); topology.add_residue(Residue("second")); auto residues = topology.residues(); assert(residues.size() == 2); assert(residues[0].name() == "first"); assert(residues[1].name() == "second");
-
Connectivity elements¶
-
class
Bond
¶ The
Bond
class ensure a canonical representation of a bond two atoms.This class implements all the comparison operators, as well as indexing.
auto bond = Bond(55, 23); // indexing assert(bond[0] == 23); assert(bond[1] == 55); // equality assert(bond == Bond(23, 55)); assert(bond != Bond(23, 24)); // lexicographic comparison assert(bond < Bond(44, 55)); assert(bond >= Bond(12, 33));
Public Types
Public Functions
-
Bond
(size_t i, size_t j)¶ Create a new
Bond
containing the atomsi
andj
.- Exceptions
Error
: ifi == j
-
size_t
operator[]
(size_t i) const¶ Get the index of the
i
th atom (i == 0
ori == 1
) in the bond.- Exceptions
OutOfBounds
: ifi
is not 0 or 1
-
-
class
Angle
¶ The
Angle
class ensure a canonical representation of an angle between three atoms.An angle is formed by two consecutive bonds:
| i k | | \ / | | j |
This class implements all the comparison operators, as well as indexing.
auto angle = Angle(55, 23, 12); // indexing assert(angle[0] == 12); assert(angle[1] == 23); assert(angle[2] == 55); // equality assert(angle == Angle(12, 23, 55)); assert(angle != Angle(12, 23, 24)); // lexicographic comparison assert(angle < Angle(44, 23, 55)); assert(angle >= Angle(11, 33, 14));
Public Functions
-
Angle
(size_t i, size_t j, size_t k)¶ Create a new
Angle
containing the atomsi
,j
andk
.- Exceptions
Error
: ifi == j
,j == k
ori == k
-
size_t
operator[]
(size_t i) const¶ Get the index of the
i
th atom (i == 0
,i == 1
ori == 2
) in the angle.- Exceptions
OutOfBounds
: ifi
is not 0, 1 or 2
-
-
class
Dihedral
¶ The
Dihedral
class ensure a canonical representation of a dihedral angle between four atoms.A dihedral angle is formed by three consecutive bonds:
| i k | | \ / \ | | j m |
This class implements all the comparison operators, as well as indexing.
auto dihedral = Dihedral(2, 55, 23, 12); // indexing assert(dihedral[0] == 12); assert(dihedral[1] == 23); assert(dihedral[2] == 55); assert(dihedral[3] == 2); // equality assert(dihedral == Dihedral(12, 23, 55, 2)); assert(dihedral != Dihedral(12, 23, 24, 2)); // lexicographic comparison assert(dihedral < Dihedral(44, 23, 55, 1)); assert(dihedral >= Dihedral(11, 33, 14, 4));
Public Functions
-
Dihedral
(size_t i, size_t j, size_t k, size_t m)¶ Create a new
Dihedral
containing the atomsi
,j
,k
andm
.- Exceptions
Error
: if any ofi
,j
,k
,m
has the same value as another
-
size_t
operator[]
(size_t i) const¶ Get the index of the
i
th atom (i
can be 0, 1, 2 or 3) in the dihedral.- Exceptions
OutOfBounds
: ifi
is not 0, 1, 2 or 3.
-
-
class
Improper
¶ The
Improper
class ensure a canonical representation of an improper dihedral angle between four atoms.An improper dihedral angle is formed by three bonds around a central atom:
| i k | | \ / | | j | | | | | m |
This class implements all the comparison operators, as well as indexing.
The second atom of the improper is always the central atom.
auto improper = Improper(2, 55, 23, 12); // indexing assert(improper[0] == 2); assert(improper[1] == 55); assert(improper[2] == 12); assert(improper[3] == 23); // equality assert(improper == Improper(12, 55, 2, 23)); assert(improper != Improper(12, 55, 2, 21)); // lexicographic comparison assert(improper < Improper(44, 23, 55, 8)); assert(improper >= Improper(11, 33, 14, 1));
Public Functions
-
Improper
(size_t i, size_t j, size_t k, size_t m)¶ Create a new
Improper
containing the atomsi
,j
,k
andm
.j
must be the central atom of the improper.- Exceptions
Error
: if any ofi
,j
,k
,m
has the same value as another
-
size_t
operator[]
(size_t i) const¶ Get the index of the
i
th atom (i
can be 0, 1, 2 or 3) in the improper.- Exceptions
OutOfBounds
: ifi
is not 0, 1, 2 or 3.
-