pub struct UnitCell { /* private fields */ }
Expand description
An UnitCell
represent the box containing the atoms, and its periodicity.
An unit cell is fully represented by three lengths (a, b, c); and three angles (alpha, beta, gamma). The angles are stored in degrees, and the lengths in Angstroms.
A cell also has a matricial representation, by projecting the three base vector into an orthonormal base. We choose to represent such matrix as an upper triangular matrix:
| a_x b_x c_x |
| 0 b_y c_y |
| 0 0 c_z |
Implementations§
source§impl UnitCell
impl UnitCell
sourcepub fn new(lengths: [f64; 3]) -> UnitCell
pub fn new(lengths: [f64; 3]) -> UnitCell
Create an Orthorhombic
UnitCell
from the three lengths, in Angstroms.
Example
let cell = UnitCell::new([30.0, 30.0, 23.0]);
assert_eq!(cell.lengths(), [30.0, 30.0, 23.0]);
assert_eq!(cell.angles(), [90.0, 90.0, 90.0]);
assert_eq!(cell.shape(), CellShape::Orthorhombic);
sourcepub fn infinite() -> UnitCell
pub fn infinite() -> UnitCell
Create an Infinite
UnitCell
.
Example
let cell = UnitCell::infinite();
assert_eq!(cell.lengths(), [0.0, 0.0, 0.0]);
assert_eq!(cell.angles(), [90.0, 90.0, 90.0]);
assert_eq!(cell.shape(), CellShape::Infinite);
sourcepub fn triclinic(lengths: [f64; 3], angles: [f64; 3]) -> UnitCell
pub fn triclinic(lengths: [f64; 3], angles: [f64; 3]) -> UnitCell
Create an Triclinic
UnitCell
from the three lengths (in Angstroms)
and three angles (in degree). alpha
is the angle between the vectors
b
and c
; beta
is the between the vectors a
and c
and gamma
is the angle between the vectors a
and b
.
Example
let cell = UnitCell::triclinic([10.0, 10.0, 10.0], [98.0, 99.0, 90.0]);
assert_eq!(cell.lengths(), [10.0, 10.0, 10.0]);
assert_eq!(cell.angles()[0], 98.0);
// Rounding errors might occur due to internal representation
assert!((cell.angles()[1] - 99.0).abs() < 1e-12);
assert_eq!(cell.angles()[2], 90.0);
assert_eq!(cell.shape(), CellShape::Triclinic);
sourcepub fn from_matrix(matrix: [[f64; 3]; 3]) -> UnitCell
pub fn from_matrix(matrix: [[f64; 3]; 3]) -> UnitCell
Create an UnitCell
from a cell matrix. If matrix
contains only
zeros, then an Infinite
cell is created. If only the diagonal of the
matrix is non-zero, then the cell is Orthorhombic
. Else a
Triclinic
cell is created. The matrix entries should be in Angstroms.
Panics
If the matrix has a negative determinant, or more generally is not representing a unit cell.
Example
let cell = UnitCell::from_matrix([
[1.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 3.0]
]);
assert_eq!(cell.lengths(), [1.0, 2.0, 3.0]);
assert_eq!(cell.angles(), [90.0, 90.0, 90.0]);
assert_eq!(cell.shape(), CellShape::Orthorhombic);
sourcepub fn lengths(&self) -> [f64; 3]
pub fn lengths(&self) -> [f64; 3]
Get the three lengths of the cell, in Angstroms.
Example
let cell = UnitCell::new([30.0, 30.0, 23.0]);
assert_eq!(cell.lengths(), [30.0, 30.0, 23.0]);
sourcepub fn set_lengths(&mut self, lengths: [f64; 3]) -> Result<(), Error>
pub fn set_lengths(&mut self, lengths: [f64; 3]) -> Result<(), Error>
Set the three lengths of the cell, in Angstroms.
Errors
This function fails if the unit cell is infinite, or if one of the lengths is negative.
Example
let mut cell = UnitCell::new([30.0, 30.0, 23.0]);
cell.set_lengths([10.0, 30.0, 42.0]).unwrap();
assert_eq!(cell.lengths(), [10.0, 30.0, 42.0]);
assert!(UnitCell::infinite().set_lengths([1.0, 1.0, 1.0]).is_err());
sourcepub fn angles(&self) -> [f64; 3]
pub fn angles(&self) -> [f64; 3]
Get the three angles of the cell, in degrees.
Example
let cell = UnitCell::new([20.0, 20.0, 20.0]);
assert_eq!(cell.angles(), [90.0, 90.0, 90.0]);
let cell = UnitCell::triclinic([20.0, 20.0, 20.0], [100.0, 120.0, 90.0]);
assert_eq!(cell.angles()[0], 100.0);
// Rounding errors might occur due to internal representation
assert!((cell.angles()[1] - 120.0).abs() < 1e-12);
assert_eq!(cell.angles()[2], 90.0);
sourcepub fn set_angles(&mut self, angles: [f64; 3]) -> Result<(), Error>
pub fn set_angles(&mut self, angles: [f64; 3]) -> Result<(), Error>
Set the three angles of the cell, in degrees.
Errors
This function fails if the unit cell is not Triclinic
.
Example
let mut cell = UnitCell::triclinic([20.0, 20.0, 20.0], [100.0, 120.0, 90.0]);
assert_eq!(cell.angles()[0], 100.0);
// Rounding errors might occur due to internal representation
assert!((cell.angles()[1] - 120.0).abs() < 1e-12);
assert_eq!(cell.angles()[2], 90.0);
cell.set_angles([90.0, 90.0, 90.0]).unwrap();
assert_eq!(cell.angles(), [90.0, 90.0, 90.0]);
sourcepub fn matrix(&self) -> [[f64; 3]; 3]
pub fn matrix(&self) -> [[f64; 3]; 3]
Get the unit cell matricial representation.
The unit cell representation is obtained by aligning the a vector along the x axis and putting the b vector in the xy plane. This make the matrix an upper triangular matrix:
| a_x b_x c_x |
| 0 b_y c_y |
| 0 0 c_z |
Example
let cell = UnitCell::new([10.0, 20.0, 30.0]);
let matrix = cell.matrix();
assert_eq!(matrix[0][0], 10.0);
assert_eq!(matrix[1][1], 20.0);
assert_eq!(matrix[2][2], 30.0);
assert!(matrix[1][2].abs() < 1e-9);
sourcepub fn shape(&self) -> CellShape
pub fn shape(&self) -> CellShape
Get the shape of the unit cell.
Example
let cell = UnitCell::new([10.0, 20.0, 30.0]);
assert_eq!(cell.shape(), CellShape::Orthorhombic);
sourcepub fn set_shape(&mut self, shape: CellShape) -> Result<(), Error>
pub fn set_shape(&mut self, shape: CellShape) -> Result<(), Error>
Set the shape of the unit cell to shape
.
Errors
This can fail if the cell length or angles are incompatible with the new shape.
Example
let mut cell = UnitCell::new([10.0, 20.0, 30.0]);
assert_eq!(cell.shape(), CellShape::Orthorhombic);
cell.set_shape(CellShape::Triclinic).unwrap();
assert_eq!(cell.shape(), CellShape::Triclinic);